Two-parameter conformable fractional semigroups and abstract Cauchy problems

نویسندگان

چکیده

The goal of this work is to introduce the two-parameter conformable fractional semigroups and provide a definition its infinitesimal generator. For such generators, we develop multiple results. In addition, show that solution for abstract Cauchy problems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Two-parameter Generalized Skew-Cauchy Distribution

In this paper, we discuss a new generalization of univariate skew-Cauchy distribution with two parameters, we denoted this by GSC(&lambda1, &lambda2), that it has more flexible than the skew-Cauchy distribution (denoted by SC(&lambda)), introduced by Behboodian et al. (2006). Furthermore, we establish some useful properties of this distribution and by two numerical example, show that GSC(&lambd...

متن کامل

Evolution Semigroups for Nonautonomous Cauchy Problems

In this paper, we characterize wellposedness of nonautonomous, linear Cauchy problems (NCP ) { u̇(t) = A(t)u(t) u(s) = x ∈ X on a Banach space X by the existence of certain evolution semigroups. Then, we use these generation results for evolution semigroups to derive wellposedness for nonautonomous Cauchy problems under some “concrete” conditions. As a typical example, we discuss the so called “...

متن کامل

Integrated Semigroups and Their Applications to the Abstract Cauchy Problem

This paper is concerned with characterizations of those linear, closed, but not necessarily densely defined operators A on a Banach space E with nonempty resolvent set for which the abstract Cauchy problem u'(t) = Au(t), u(0) = x has unique, exponentially bounded solutions for every initial value x e D(A). Investigating these operators we are led to the class of "integrated semigroups". Among o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Filomat

سال: 2023

ISSN: ['2406-0933', '0354-5180']

DOI: https://doi.org/10.2298/fil2308303a